On the motion of slender vortex filaments
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Several approaches for slender vortex motitime local induction equation, the Klein—Majda
equation, and the Klein—Knio equatijoare compared on a specific example of sideband instability

of Kelvin waves on a vortex. Numerical experiments on this model problem indicate that all these
equations yield qualitatively similar behavior, and this behavior is different from the behavior of a
nonslender vortex with variable cross-section. It is found that the boundaries between stable,
recurrent, and chaotic regimes in the parameter space of the model problem depend on the equation
used. The boundaries of these domains in the parameter space for the Klein—Majda equation and for
the Klein—Knio equation are closely related to the core size. When the core size is large enough, the
Klein—Majda equation always exhibits stable solutions for our model problem. Various conclusions
are drawn; in particular, the behavior of turbulent vortices cannot be captured by these
approximations, and probably cannot be captured by any slender vortex model with constant vortex
cross-section. Speculations about the differences between classical and superfluid hydrodynamics
are also offered. ©1997 American Institute of Physids$$1070-663(97)00803-9

I. INTRODUCTION is the vorticity. The velocityu(x) can be determined from

. . . ) the vorticity e(x) through the Biot—Savart law:
Fluid vorticity is often concentrated in small regions.
1 ((x=X)Xe(X)

The special case where vorticity is concentrated on a single _
slender filament is important in many probleiesg. turbu- u()=- 4 Ix—x'|3 ax’. @
lence, superfluidity The study of the motion of slender vor-
tices has received a lot of attention. The local induction
equationt the Klein—Majda equatiof,and the Klein—Knio
equatiori are three different approximations for the motion I' [ (x=x")xdl(x")
of slender vortices. The comparison of these models and the u(x)= T w13
study of differences between the results by these models and
what we expect in turbulence theory are the main goals off self-induced motion of the line filament is calculated by
this paper. evaluating the velocity from{5) on the filament itself, the
The paper is organized as follows. After a brief review result will be logarithmically infinite if the filament is curved
of vortex dynamics, we present approximate equations ofnd zero if it is straight. Thus, self-induced motion occurs
motion for slender vortices, namely, the self-induction equaonly for curved filaments. But to obtain the correct value for
tion, the Klein—Majda equation and the Klein—Knio equa-the velocity, further considerations of the finite size of the
tion. The third section describes a model problem whichvortex core as well as the vorticity distribution are required.
comes from the theory of vortex wave motion in superfluid  In this paper we focus our attention on very thin vortex
helium. The equations are applied to the model problem, antilaments. We shall use the terthin or slenderto describe
the results are displayed. We then draw various conclusiongny vortex filament with a typical radius of the core that is
from these results. small compared to a characteristic radius of curvature. Thin
We consider unbounded, inviscid, incompressible flowsyortices are very important in many respects. It has been
In the absence of external force, the motion of such fluigSuggested by Chorin and AKathat thin vortices play an

If the vorticity is concentrated on a single thin filamehiof
circulationI', Eq. (4) becomes

®

C4m)c Ix—x|3

with unit density is described by the Euler equations: important role in the structure of turbulent flows.
Vortex motion in three-dimensional space differs from
Du vortex motion in two dimensions in several ways; the most
Dt -vVp 1) significant result from vortex stretchifigVortex stretching
causes vortex folding and the temperature is decreasad.
V.u=0, (2) timet—o, a statistically steady state can be expected for a

vortex filament systerft® By contrast, superfluid vortices are
whereu(x,t) is the velocity,x=(x;,X,,X3) is the position, nearly true lines, and with some exceptiofie., near the

p is the pressurey = (d/9x,,dl 9x,,dl9x3) is the differen-  critical temperaturgthey generally look smoother than clas-
tiation vector,t is the time, andD/Dt=d,+u-V is the ma- sical vortices and remain relatively ordered. Unlike in fluid

terial derivative. mechanics where a classical fluid has a self-adjusting tem-
The curl of the velocity field, perature, a superfluid has a fixed temperature and the con-
stant temperature of superfluid vortex states should inhibit

w=VXu (3)  vortex stretching. The cause of the differences in dynamical
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pends only on the local curvature of the vortex filament. This
leads to the local induction approximation, which réads

ar — b=t ot 5

FrEAFTS ©
where « is the curvature. Equatio(6) has a very different
character from the Euler equations, and in particular it pre-
serves vortex lengtt:

Differentiation of both sides of6) with respect to arc
length s gives the local induction equation in terms of the
tangent vector:

at 9%t

EZIXE. (7)

Hasimotd® has shown elegantly that E¢) can be re-
duced to a cubic nonlinear Schiinger equatior(NLSE)

1ip ¢ 1
Ta_(f:a_;f+§¢|¢|2 ®

behavior between superfluid vortices and classical vorticeg/here ¢ is the complex function defined in terms of the
remains a mystery. In this paper we try to give some suggeSilament curvature< and torsions:

tions. .
b=k exp(if TdS). 9
0

We call (9) the Hasimoto transformatiomnd ¢ the filament

The simulation of the motion of a very slender vortex fynction which contains all the geometrical information for
filament by using the classic vortex method would be prothe filament.
hibitively expensive due to the overlapping condition of the  \hijle the local induction approximation does not allow
vortex method? For our model problem which will be dis-  for any vortex stretching, numerical simulations indicate that
cussed in Sec. V, the number of vortex elements required byortex stretching occurs for moderately thin vortex filaments
the vortex method in a fairly coarse spatial discretization isn incompressible fluidé.To retain vortex stretching, Klein
over 1. Even with the help of a fast vortex methtda  and Majda developed an asymptotic theory for slender vor-
simulation with such a large number of numerical vortextex filaments.
elements is still not realistic. Therefore, approximate equa- The slender vortices in the Klein—Majda regime are, to
tions are developed to replace the Biot—Savart law. Thregading order, straight vortex filaments that are subject to
modeling approaches are adopted in this section to analyzgna|l amplitude displacements. The displacement of the vor-
the mOtiOI’l Of Slender vortex ﬁlaments. The firSt iS the |Ocaltex filament Center”nes away from the Straight reference

induction approximatiodLIA), which leads to a cubic non-  jines may be, but is not necessarily, large in comparison with
linear Schrdinger equation. The second is due to Klein and

Majda, who derived a more accurate asymptotic equation for

the motion of thin vortex filaments. The third approach, cred-

ited to Klein and Knio, takes the core vorticity structure into A ™
consideration. It should be pointed out that all of these three
equations assume that the core size is small compared with
the radius of curvature. According to the stability analysis
given by Widnall et al'? and Wang® instability occurs
when the wavelength is comparable with the core size of the
vortex filament. Hence, it is plausible to conjecture that hair-
pins might not develop when the core size is very small, iy Pt
even though Klein and Majd&claimed that hairpins appear
in their model.

To start with, consider a vortex filament described by
r(s), wheres is an arc length parameter measured along the
filament and (s) is the position vector. Ldt n, b denote the
unit tangent, normal, and binormal vectors, respectivebe
Fig. 1).

One way to avoid singularity in Eq5) is to simply
ignore the nonlocal contribution of the filament and replacerc. 2. A special perturbation of the straight reference filametging,bg)
the Biot—Savart law(5) by a velocity expression that de- form a right-handed orthonormal basié? (o, 7) = a(o, 7)ng+ B(o, 7) b

FIG. 1. Definitions for the local induction approximati¢nlA ).

II. EQUATIONS OF MOTION FOR THIN VORTICES

bo
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a typical core size of the filament but it must be small com-shown that the nonlocal terme?1[ ¢] is responsible for the
pared to a typical perturbation wavelength. In turn, the periocal self-stretching of filament. It is also shown by Klein
turbation wavelengths are small compared to a characteristiend Majd& that the nonlocal operator generates a highly
radius of curvature of the filament. Thus with lengths mea-singular perturbation of the NLSE). According to the nu-
sured on the curvature scale, the slender vortices in thmerical calculations presented in Klein and Majfi#he fila-
Klein—Majda regime are characterized dyall amplitude  ment function¢ develops higher and much narrower peaks
short wavelengthdistortions of a slender columnar vortex. as time evolves when compared with the corresponding so-

Following Klein and Majd&, we assume the centerline lutions of NLSE; and these curvature peaks may correspond
of a slender vortex filamenkL?®(t):s—x(s,t;¢), is described to the birth of small scale “hairpins” or kinks along the
by (Fig. 2 actual vortex filament.

Recently Klein and Knid proposed a model for slender
vortex motion. Their model gives an asymptotically correct
wherex is the position vectorg=s/e and r=t/e* are the account of the local effect and an exact account of the non-
scaled space and time coordinatigsis a constant unit vec- local effect. More importantly, it represents the influence of
tor, ande is a perturbation scaling parameter which satisfieghe vortex core structure on the vortex filament motion, in-
e < 1. The vortex core sizé and the parameterare linked  cluding a nontrivial axial flow. By combining a thin-tube

X(s,t;e)=eaty+e2x? (o, 7)+0(e?), (20

through the distinguished linfit method’ with their asymptotic analysis, Klein and Knio also
1 presented several numerical methods for solving their model
gl=—— (11 equation. Most recently, Klein, Knio, and Titfgproposed a
In 2_8+C model that allows an accurate description of the effects of
) axial flow in core, viscosity and vortex stretching on slender

whereC is a constant. vortex filament motion. Here we consider the inviscid evo-
When the potential flow at infinity is zero, the filament lution of slender vortex filament with no axial flow. _
motion obeys the perturbed binormal law Detailed asymptotic analyséshow that under certain
conditions of quasi-steadiness, the velocity of a slender vor-
IX(s,1) tex filament is
at

= kb(s,t) +£2v(s,1), (12

+C|kb+Qf(x). (17

r 2
where £?v(s,t) is a small perturbation velocity. Using the u(x)= yp= In((—s
curve representatiofll0) and by the method of asymptotic .
expansions, one finds HereT is the circulation of the vortexs andb denote re-

v=1[x?]xt,. (13  spectively the local curvature and the unit binormal vector at

] . i X. The quantityC is a core structure coefficient given by
Here the linear nonlocal operattr- ] is defined by

» 1 C=li _4772fr 1%y —| L
|[w](o)=f_ T w(o+h)—w(o)—hw'(o+h) TIMr el 7z [ TOT AR =INT S
82 (=
h2 o ranr(0)2 47
+7H(1—|h|)W”(0) dh, (14 rz)," v dr’, (18

where the notatioh= d/do andH is the Heaviside function. wherev©, w(® are the leading order axisymmetric axial and
Therefore, the nonlocal contribution of the filament is re-circumferential velocities in the vortex core;=r/§, and
placed byl, whose effect can be understood by considerings is the core radius. The last ter@(x) in (17) is the finite

its Fourier symbol: part of the line Biot—Savart integral, which reflects the non-
local contribution to the self-induced velocity. For conve-
f(g):f e % (g)do nience, we shall call Eq17) the Klein—Knio equation even
R though it first appeared in Callegari and Titg.
=|£|2(—In|&|+Cy), (15) < 'To solve Eq.(17) for slender vortex motiqn, Klein and
nio developed a method based on the thin-tube method.
whereCy=1/2—y, and y is Euler’s constant. Before introducing Klein and Knio’s method, we briefly re-
Klein and Majda showed that Hasimoto’s transformationyjew the thin-tube method.
(9) turns the evolution Eq(12) with v from (13) into the The standard thin-tube methdds a simplified version
perturbed nonlinear-nonlocal Schifnger equation of general vortex element meth@dor three-dimensional in-
194 0% pompressible flows. In. the thin—Fube model, a.slender vortex
T W+82(%¢|¢|2—|[¢]). (16 is represented by a single chain of overlapping vortex ele-

ments. Each element is a circular cylinder characterized by a
We call (16) the Klein—Majda equationIn this equation, the circulationI" equal to the flux of vorticity across its cross

nonlocal terml[ ¢] directly competes with the cubic nonlin- section and by two Lagrangian variables which describe the
earity. Thus, the nonlocal contributions become as importantndpoints of the associated line segment. The Lagrangian
as the nonlinear local induction effects. Furthermore, it isvariables are moving with the fluid and can be denoted by
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Xxi,» 1=1,2,...N. The vortex elements are ordered so thatTherefore, when we use the standard thin-tube method with
the indices increase in the direction of the vorticity. There-6""= 8, we have to add an explicit correction velocity to the

fore, the vorticity can be discretized as
N

“’(X'“:i; T'8xi (D s(x—x{(1)). (19)

In this expressionf 5 is a smooth approximation to the Dirac
delta function with a cutoff radiug and is formed as

1 (X
fﬁ(X):gf(? , (20)
and
oxi(t) = xi+1(t) = x;i(1), (21
i+1()+ xi(t
(= K )

> ,
denote respectively the length and center of ittievortex

element. The smoothing functiof(x) is chosen so as to
enhance accura&.The velocity at a poink can be obtained
by inserting(19) into (5) and performing the integration. The

result is the following desingularized version of the Biot—
Savart law:

(X=xF (1)) X 8x{(t)
Ix— x5 (t)]°

1 N
u(x,t)=— EZ& r

X Ks(x=xi(1)), (23

) s
1)

andK(r) is the velocity smoothing kernel corresponding to

the vorticity smoothing kernel:
r — —
K(r)=47-rf r2f(r)dr. (25)
0

The calculated velocitu( ;) is used to advancg; .

numerical velocityu'™.

If 5" is chosen so tha€— C"™+In(5"/8)=0, then
u=u". In other words, if we use a rescaled numerical core
radius

8= 5 exp(C— Ctm), (28)

the standard thin-tube method can be applied directly with-
out correction. This method is attractive since it does not
contain a correction term which involves numerical calcula-
tions of curvature and binormal vector.

In Eg. (26), the choice of the numerical core radius
5" is not fixed. This could be very helpful when the physi-
cal core radiuss is extremely smalle.g., superfluid vorti-
ces. In the two particular methods of correction described by
(27) and(28), the numerical core radius'™ is either exactly
equal to or of the same order as the physical core radlius
When é§ is very small, the overlapping condition required by
the thin-tube method makes numerical simulations virtually
impossible. In the numerical experiments presented in this
paper, the ratio of the physical core radius to the period of
the solution is of the order 13. Obviously, one cannot af-
ford to uses™ that small. We shall use a moderately small
5" in the thin-tube method and then do correction according
to (26).

IlI. NUMERICAL SOLUTIONS OF THE APPROXIMATE
EQUATIONS

The method we use to solve the local induction approxi-
mation is due to Buttké? Instead of solving for the position
vectorr, Buttke’'s method solves for the tangent vedtas
in Eq. (7).

Let t;‘ denote the approximation tfjAs,nAt). Buttke
developed a Crank—Nicholson type scheme:

thrl_¢h= At
J I 4(As)?

n+1
X (1

n+1 n
(" +t)

HET L ), (29)

In the above standard thin-tube method, the cutoff radius

is usually chosen to be the physical vortex core radius. Klei
and Knio found that this choice, in general, leads to a

O(1) error due to the differences between the physical and

numerical core structurésSo the velocity given by the thin-
tube method has to be corrected.

Let u™ denote the velocity obtained from the thin-tube
method(23), and letC, C"™ denote respectively the physical

n .
and numerical core structure coefficients. The modification&j+ We definex;
of the thin-tube model derived by Klein and Knio can be

summarized into the following form:

(26)

T 5ttm
u=u"m+ yp= C—C"+1n T) kb,

whereu at the left-hand side is the trueorrected velocity
of the filament.
If '™ is chosen to be5, then

— Itm_l_L C_cttm b 2
u=utt o—( )«b. (27)

Phys. Fluids, Vol. 9, No. 4, April 1997

yvhere As is the spatial increment andit is the temporal
rncrement.

In Eq. (29), {t?“} can be solved by two iterative meth-
ods. Both methods produce a sequence of unit veotbrs
which converges td]-”, provided At is appropriately re-
stricted.

Let x}):tf‘. In the first iterative method, given unit vector
k*1 py the equation

k k k
G+ X (G H X+ )

—th=
Y] 4 4(As)?
(30)
and
i a1
Xj —W. ( )

It can be showft thatx!—t] ™" if At<(As)/4.
In the second iterative method, we define the sequence
of unit vectorsx' by
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wi1 . At K1 on For the LIA equatioru= kb, the time step\t is restricted by
X TGz ) At<O((As)?).** Thus for the velocity given by (39), in
order to maintain the numerical stability, the time st&p
XX+ X+t ). (32 has to be restricted by
The sequence! obtained in this mann&t converges to 1
(1 if ft<(AS;z_ J At<—m O((4s)?). (40)
For the Klein and Majda equatio{16), we use a frac- i In 5

tional step method developed by Klein and Majfarhe _ S .
method is designed for general periodic initial data. It con-Whenéis extremely small, the coefficient in front ab in
sists of two steps. In the first fractional step, we solve the39) is large. That means, for the velocity given (89), the

Fourier transform of the linear problem time stepAt has to be a tiny fraction ofXs)?. In the nu-
merical experiment using the thin-tube method without cor-
1 ﬁ _ ‘72_¢ — &[] (33) rection term, we found that we can take fairly large time step
i 91  do? At without suffering from the numerical instability. It makes

v for the di Fouri 4631 of d sense to use a larger time step 6" in (26) and use a
exactly for the discrete Fourier modés,} of data{¢} on smaller time step for the correction term (B6). Note that

an equi-distance grid. The Fourier modes} are obtained he direct evaluation o™ in (26) costsO(N2) operations,

by applying the discrete fast Fourier transfoft@FFT) to  hile it takes onlyO(N) operations to compute the correc-
{¢}. The exact solution forp, is given by tion term. Thus we use a hybrid of a fractional step method
and a high order Runge—Kutta method to sal26). In the

di(T+A7)= di(m)exp(—i[I12+ e (1)]A7). (34 first fractional step, we solve
After {¢} has been advanced fromto 7+ A7, an inverse dx
Fourier transform (IFFT) is employed to calculate a=uttm (41)

{¢(7+A7)} from {;b|(7'+AT)}.

In the second fractional step, we solve the nonlinea®y @n embedded Runge—Kutta metffotbr one step with

ODE step sizeAt. In the second fractional step, we solve
dx I ttm
109 1 — _ cottm
T 5282§¢|¢|2 (35 gt~ a7 D) C-CTIn =3 (42

by the same embedded Runge—Kutta method for many time
steps until the sum of the time steps is equalAth As
i(m+AT)= ¢ (r)expie? | ¢;(7)|?A7). (36)  before, t.hg two steps are alternated in time through a Strang-
type splitting.
The two steps are alternated in time through a Strang-
type splitting. The method is second order accurate and un:
conditionally stable. An adaptive time stépr is chosen by r]v_ A MODEL PROBLEM

exactly at each discrete spatial location by

To examine the equations for slender vortex motion, we

AT:SZ_W i (37)  apply them to a well-understood model problem. Our prob-
w* N lem comes from the theory of superfluid vorti¢ésshosen
In Eq. (37), s is a safety factofsays=0.5), N is the number because of t_he We_zalth of analytical results available._ o
of grid points andv* is the weighted average frequency Superfluid helium at absolute zero temperature is invis-

cid and irrotational. The circulation around a vortex core is
quantized and the core radius of superfluid vortices is very
small (O(1 A)). Vortex waves are a very important phenom-
enon in the understanding of quantized vortex lines. Wave
J’ W(|¢|)|&S|2da/|¢||f2), (39 excitations of isolated vortex lines in superfluid are consid-
ered to be helical disturbances which rotate about the axis of
wherew , w are the frequencies in the fractional step solu-Symmetry with a known frequency. When two helical waves
tion formulas(34) and (36). are excited on a vortex line between fixed boundaries, two
Once the filament functios is known, one can deter- Waves of opposite polarization combine to form a plane

mine the filament position using the Serret—FrenetStanding wave called a Kelvin wave. _
equation$3 Benjamin and Feff showed that finite-amplitude waves

To solve the Klein—Knio equatiofl7), we use a thin- ©n deep water are unstable to perturbations in the sideband
tube method with a moderately small numerical core radiugvaves(i.e., modes whose number of half waves arek,
5'™ and then make correction according(6). The correc- Wherek=1,2,... anch is the number of half waves for the
tion term in(26) is roughly main harmonit. The Benjamin—Feir instabilities are wide-
spread and play an important role in nonlinear wave phe-
nomena. In particular, Yuen and Fergu&bmave shown that
the Benjamin—Feir instabilities appear in the wave solutions

e ma>{— GG

5ttm

1ﬂl b 39
27 N5 Kb (39
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FIG. 3. Sideband instability for Kelvin waves by LIA.

to the NLSE. Since helical waves in our problem are wavesome time the sidebands reach their peak amplitudes and the
solutions to the NLSE, it is not surprising that the Benjamin—main carrier reaches its minimum. Then the sidebands and
Feir instabilities occur for Kelvin waves. Following the sta- the main carrier return to their original amplitudes. The main
bility analysis of Andersen, Datta, and GunshbiSamuel harmonic and the sidebands grow and decay alternately, and
and Donnelly* found that the stability condition for helical the process repeats itself although not with perfect periodic-

waves which obeys the NLSE is ity. This kind of phenomenon is normally referred to as the
Fermi—Pasta-Ulam recurrence® as opposed to Poincare-
ap/N<1/(27n), (43 currence, which requires the return of both amplitude and

phase to their initial states. A further increase in the initial

wherea, is the initial amplitude of the main helical wave, valueag/\ leads to a behavior which is neither stable nor
\ is the wavelength, and is the number of half waves on recurrent. It is calleathaotic Those behaviors will be illus-
the vortex. The stability conditiofd3) can also be obtained trated numerically in the following section.
by a linear stability analysis following Klein and Majd4.

The amplitudes of the unstable sidebands grow exponen-
tIaIIy when aol)\ violates the Stab|l|ty Conditi0m3) Once V. NUMERICAL SIMULATIONS
the amplitudes of the sidebands grow to be comparable in
magnitude to the amplitude of the main wave, this instability =~ We choose the same problem as in Samuels and
analysis is invalid and a new behavior occurs. More specifiDonnelly?* The initial condition is chosen as a vortex line
cally, when the initial amplitude,/\ is smaller than the between two parallel planes which are 20m apart from
threshold value given by43), the amplitudes of the main each other. The initial position of the vortex line is a planar
harmonic and the sidebands remain unchanged. In this cassave perturbed by two neighboring sidebands of small am-
we havestable phenomena. If the initiabg/\ is slightly  plitude. In our numerical simulations, we normalize the pa-
above the threshold given bi#3), the amplitudes of the rameters by taking the distance between the walls as a unit.
sidebands grow due to Benjamin—Feir instabilities. In theThus the dimensionless core radius of the superfluid vortex
meantime, the amplitude of the main carrier decreases. Aftdilament is =10"'%10 °=10"5. The boundary conditions
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FIG. 4. Sideband instability for Kelvin waves by the Klein—Majda model.

are that the vortex line must meet the boundaries perpendictN=257 nodes to represent the vortex filament between the
larly and can slip along the boundaries. These conditions cawalls; a midpoint rule was used to recover the position vec-
be implemented by the method of images. One reflects thors from the tangent vectors.

filament once with respect to one of the boundaries and then The numerical results given by the Klein—Majda model
extends it periodically. In our numerical simulations, as wefor ay/A=0.02, 0.03, 0.04, and 0.06 are shown in Figs) 4
advance the vortex filament in time, we decompose the filatb), (c), and (d). Similar to what we see in Fig. 3, stable,
ment curve into Fourier modes. In this way, we obtain therecurrent, and chaotic behaviors are also observed here. Fig-
amplitudes of the main mode and its sidebands as functionsre 4 was obtained withl=257 ande =0.309 which is re-

of time't. lated to the core size through the distinguished lihi).

In Fig. 3 we present the results given by the self-  Figures %a), (b), (c), and(d) display the results by the
induction equation. Thex-axis is the time, whereas the Klein—Knio model corresponding to initial values of
y-axis is the ratio of the amplitude to the wavelength ay/A=0.03, 0.04, 0.06, and 0.08. Again, stable, recurrent,
Plotted in Fig. 3 are the amplitude of the main harmonicand chaotic behaviors are exhibited. The evolution of the
(n=11) and the lower harmonics1& 10, 9, 8 in order of vortex filament by the Klein—Knio equation keeps the total
decreasing amplitudeas a function of time. The plot of the arclength almost a constant. The results in Fig. 5 were ob-
upper harmonicsr(=12, 13, 14) looks very similar. When tained withN=513 andé"™=0.01.
the ratio of the initial amplitude of the main harmoraig to We want to point out that even though our graphs rep-
its wavelength\ is 0.02, the amplitudes of the sideband resenting the “chaotic” cases are shown only for a few os-
waves do not groyyFig. 3(a@)] and we obtain stable phenom- cillations, our calculations show that as time increases, they
enon. If the initialag/\ is increased to 0.08Fig. 3b)] or  become more and more chaotic and they do not exhibit any
0.04[Fig. 3(c)], a recurrent behavior is observed. Wheajt recurrency.

\ is further increased to 0.J&ig. 3(d)], a chaotic behavior The above numerical experiments indicate that the self-
occurs. These results confirm the stability conditi@3). induction equation, the Klein—Majda model, and the Klein—
During the evolution of the filament, the total arclength is Knio model yield qualitatively similar results for our model

conserved. In the calculations which lead to Fig. 3, we usegroblem. However, they do have some quantitative differ-
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FIG. 5. Sideband instability for Kelvin waves by the Klein—Knio model.

ences. The boundaries between stable, recurrent, and chadiNt.SE. For our model problem, the parameteis approxi-
regimes in the parameter spa@e., initial values ofag/\) mately 0.309, hence the self-induction equation has a larger
are different for these models. A comparison of Fi@)%nd  stability region than that of the Klein—Majda model.
Fig. 3(b) shows that the Klein—Knio equation has a larger  All of the above simulations have assumed a quasi-
stability region than that of the self-induction equation, sincesteady core structure for the thin vortex filament. Now we
for the same initial valuea,/A=0.03, the self-induction \ant to examine what happens if the core structure is not
equation gives unstabléecurrent behavior, whereas the gyasi-steady and the initial discrete core structure may not
KIem—_Knlo model gives stable be_h_awor. _Further ”Umer_'calsatisfy the quasi-steadiness requirement. For this purpose, we
experiments reveal that the stability region of the Klein— o grangard vortex method to simulate the behavior of the
Knio model is related t_q the core size A larger core SIZ&ortex filament. The standard vortex method uses a finite
gen:_rates a Iarg(tarr] stab||fI|Fydregt|_o n. i d the Klei collection of vortex filaments with overlapping cores to ap-
0 compare the Sefi-induction equation and the em_proximate the vorticity field. It makes no assumption on the

Majda model, we plot the stability diagram for both the hvsical vorticity. For the theoretical. numerical mout
Klein—Majda model and the NLSE in Fig. 6 fer=0.5[Fig. physical vorticity. =or Ihe theorelical, numerical, computa-

6()], £=0.4778[Fig. 6 (b)], £=0.309 [Fig. 6 ()], and tional, and physical aspect; ofs\éortex_rrlcgthods, onf can see,
£=0.1[Fig. 6 (d)]. The solid lines are for the Klein—Majda for examzple, Beale and N_Iaj& ;" Chorin; Leona_rd? and
model and the dashed lines are for the NLSE. The horizontdUckett™® In our computation, we used 7 vortex filaments to
axis is ag/\, and the vertical axis is the growth ra@. approximate the cross-section of the physical vortex fila-
Instability occurs for negativés. As shown in Fig. 6, the Ment. Each of these 7 numerical filaments initially has the
stability behavior of the Klein—Majda model depends on theSame shape of Kelvin waves and is represented by 200 vor-
parametee. More precisely, ifs>0.4778, the Klein—Majda  t€X elements. The calculation is terminated if there is a fila-
model always gives stable behavior. Whex 0.4778, the ment with more than 1000 elements. A fourth-order Runge—
Klein—Majda model has a smaller stable region than that oKutta method was used to advance the filaments with time
the NLSE. Ase is further decreased, the stability region of stepAt controlled byAt- maxu;'|<Ch, whereu]' is the ve-

the Klein—Majda model eventually converges to that of thelocity at theith node,C is a constant anH is the spatial step
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FIG. 6. Stability diagram for the Klein—Majda model and NLSE.

size. Figures (&) and (b) are three-dimensional perspective still unable to achieve such a high resolution in the spatial
views of the vortex at tim@é=0.4216 and 1.9189. Here the discretization to settle this issue.

initial valueagy/\ is taken as 0.04. Figure$af and(b) show In all of our numerical calculations, we have carefully
that violent stretching happens very quickly. Figurés @and  checked that our choices of numerical parameters provide an
(d) are two-dimensional views of Figs(&f and (b), respec- adequate resolution and that further refinement does not
tively. It appears that the cross-section is no longer un€hange the conclusions. More specifically, numerical solu-
changed. We plot the evolution of the modes8, 9, 10 and tions of the three models for slender vortex filament have
11 in Fig. 8 with different initial dataag/A =0.02, 0.04, converged in the sense of maximum norm. The convergence
0.06, 0.08. The solid curve denotes the amplitude of modef a numerical solution by standard vortex method is a subtle
n=11, dashed curven=10, dash-dotted curve=9, and issue. For the standard vortex method, the traditional point-
dotted curven=_8. These results show that a vortex filamentwise convergence is not expected. Here the conclusion we
with nonguasi-steady core structure exhibits a wild behaviordraw from the numerical solutions of standard vortex method
which is quite different from a thin vortex filament with is that a thick vortex filamerfi.e., wavelength of the pertur-
quasi-steady core structure. This may explain the differenbation wave is not small compared to the core jsdmes not
behavior between thick classical vortices and superfluid vormaintain a quasi-steady core structure. This conclusion is not
tices, since superfluid vortices are postulated to have a comhanged when the numerical mesh is refined. Also this con-
stant core structure. For thin classical vortices, the assumplusion is supported by the calculations of ChofiriThe

tion of the quasi-steady core structure is self-consistent in thescillations in Figs. 3, 4 and 5 are probably due to the effect
asymptotic analysid. However, to determine numerically of other sidebands and the effect of the nonlinear Hasimoto
whether or not a quasi-steady core structure will always retransformation from the filament function to filament curve.
main quasi-steady requires an accurate resolution of the cota the stability analysis, we keep only three modes1,
structure. Currently, even with fast vortex method, we aren, andn+1. Thus the effects of other sidebander ex-
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FIG. 7. Perspective views of the vortex.

ample,n—2, n+2, etc) are ignored. Also in the stability the self-induction equation and the Klein—Majda equation
analysis, we deal with the filament function instead of theare in good agreement with the results of the linear stability
filament curve. We have shoihthat a small sideband per- theory.

turbation to the filament function is, to the leading order,  The stability region of the Klein—Majda equation is
equivalent to a small sideband perturbation to the filamentlosely related to the core size of the vortex filament. When
curve. Thus the small oscillation in the graphs, caused byhe core size is larger than a critical value, the Klein—Majda
other sidebands and the nonlinear Hasimoto transformatioquation always gives a stable solution. When the core size

does not contradict with the stability analysis. is below the critical value, the stability region of the Klein—
Majda equation is smaller than that of the self-induction
VI. CONCLUSIONS equation. When the core size is further decreased, the stabil-

We have used three different equations, namely the seh":[y region of the Klein—Majda equation coincides with the
induction equation, the Klein—Majda equation, and thestabili'[y region of the self-induction equation. For the model
Klein—Knio equation, to study the sideband instability of problem, the stability region of the Klein—Majda equation is

Kelvin waves in superfluid helium. In this model problem, Smaller than that of the self-induction equation.
we assume that the thin vortex filament has constant cross- 1 he stability region of the Klein—Knio equation also de-
section. pends on the core size of the vortex filament. The bigger the
Our numerical simulations reveal that all those method$0re size, the larger is the stability region. We further find
yield qualitatively similar results. For our model problem, that for the model problem, the Klein—Knio equation has a
the self-induction equation, the Klein—Majda equation, andarger stability region than that of the self-induction equa-
the Klein—Knio equation all present stable, recurrent, andion. Hence, among our three equations for the model prob-
chaotic phenomena, corresponding to different ratios of théem, the Klein—Knio equation gives the largest stability re-
amplitude of the main wave to its wavelength. The vortexgion, while the Klein—Majda equation has the smallest
filament whose motion is described by the self-inductionstability region.
equation, the Klein—Majda equation or the Klein—Knio We also carried out the computations for a vortex with
equation evolves smoothly and the total arc length is almoston-quasisteady core structure. A Biot—Savart model was
conserved. Furthermore, hairpin structures are not formedmployed. Only chaotic phenomena were observed for side-
during the vortex filament evolution. Our calculations usingband perturbations. Our numerical results imply that vortices
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FIG. 8. Behaviors by the vortex method.

with nonquasi-steady core structure behave quite differently The difference between classical and quantum vortices
from thin vortices with quasi-steady core structure. Theare often explained as a consequence of quantization; accord-
thickness and deformation of the vortex core might play aring to our results, maybe slenderness is even more important.
important role in the differences between classical and supeff course, only very slender vortices can have a quantized
fluid vortex dynamics, which have been highlighted by circulation.
Buttke* If the self-induction equation, the Klein—Majda equa-
In the derivations of the self-induction equation, thetion, and the Klein-Knio equation are used to describe super-
Klein—Majda equation, and the Klein—Knio equation, wefluid turbulence**>3¢ then the physical assumption that
have assumed a thin filament model, in which hairffiesse  there is no vortex folding on small scale has been implicitly
excluded; our numerical results have no hairpins, and therenade. Our numerical simulations suggest that this may be a
fore the thin filament model is self-consistent, at least for aeasonable conclusion for a single filament, but is for the
class of problems that contains our model problem. Since thmmoment an additional assumption for a tangle of filaments.
models are increasingly refindde., the Klein—Knio model Deeper understanding remains to be found.
takes more effects into account than the Klein—Majda model,
yvhlch in turnis amore accurate approxmaﬂon than the .SeIfACKNOWLEDGMENTS
induction equatio)) it is reasonable to conjecture that motion
without hairpins is self-consistent for a class of thin vortex  This work is based in part on the author’s Ph.D. disser-
filaments of small-enough cross-sections. tation, carried out under the supervision of Professor Alex-
If one views superfluid vortices as classical vortices withandre Chorin. It was supported in part by the Applied Math-
very thin constant cross-section, the conclusion is consister@matical Sciences Subprogram of the Office of Energy
with the statistical theory of vortex motibmwhich shows that Research, U.S. Department of Energy under Contract No.
classical vortices, with finite and deformable cross-sectionDE-AC03-76SF00098. All computations were performed at
have a temperature determined by vortex stretching, whil¢he Lawrence Berkeley National Laboratory. The author is
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